
Andromeda: A Trusted Execution Framework for
Android Based on Secure Enclaves

Dimitrios Karnikis, Sotiris Ioannidis
Distributed Computing Systems Laboratory,

Institute of Computer Science, Forth Heraklion Greece
{dkarnikis, sotiris}@ics.forth.gr

1. Introduction
Andromeda, is a framework that provides native Intel SGX support for Android x86_64 OS with hardware support. Andromeda offers the first SGX
interface for Android and enhances its cryptographic system with enclave support. It offers secure execution of cryptographic functions, a Java API
named Vault(), that gives control to enclave, an SGX-Android compliant toolchain and a kernel integrity monitor.

2. Andromeda control flow

KeyStore 
Integrity 
Monitor 

JNI Bindings 

SGX Runtime Libraries 

Intel SGX Driver 

Java API

Android Applications 

SGX AESM
Service 

Architectural 
Enclaves  

user space 
 

kernel space 

1. Android applications that perform common calls to the Android System. These
are indirect call to the Intel SGX features that reside on the Android System.

2. Perform calls on Java API, Keystore functions or the Integrity Monitor. These
events occur inside the Java binder.

3. Using the Java API provided by Andromeda, the flow is handled through JNI
bindings to enter the enclave mode.

4. The SGX calls make use of the libsgx_uae_service and libsgx_urts that run na-
tively on Android OS.

5. AESM service validates the integrity of the calls and allows access to the hard-
ware(does the same work as on Unix Systems).

6. Data between transfer is completed between user and kernel space using the
Andromeda driver for Intel SGX.

3. Andromeda Vault API
Constructor Summary
Constructor Description
Vault() Instantiate an enclave class
Type Method Description

int store(byte[] data) Stores the
data and returns its index

byte[] retrieve(int index) Retrieves the
data using its index

void seal(String path) Seals the enclave
data and stores to file-system

void unseal(String path) Unseals the
data and populates the enclave

void destroy()
Destroys the secure enclave

4. Evaluation
We implemented basic cryptographic functions for the Android Keystore Service like AES-128 CTR
and RSA encryption and decryption. As a result, Android applications that use such functions, will
make use of the secure enclave mode of Intel SGX.

 0

 1

 2

 3

 4

 5

 6

 7

 8

32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K

256K

512K

1M 2M 4M 8M 16M
32M

T
h
ro

u
g
h
p
u
t 
(G

B
it
s
/s

e
c
)

Data size (Bytes)

SGX
Vanilla

 0

 1

 2

 3

 4

 5

 6

 7

 8

32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K

256K

512K

1M 2M 4M 8M 16M
32M

T
h
ro

u
g
h
p
u
t 
(G

B
it
s
/s

e
c
)

Data size (Bytes)

SGX
Vanilla

Figure 1: Throughput comparison between the vanilla implementation of AES-128 CTR found in
Android’s Keystore system and the SGX-enabled implementation provided by Andromeda’s Keystore
system, depending on the size of data being processed. The SGX-enabled implementation introduces
51%-84% overhead to encryption operations and 51% to 78% to decryption.

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

O
p

e
ra

tio
n

s 
p

e
r 

se
co

n
d

Data size (Bytes)

SGX
Vanilla

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

O
p

e
ra

tio
n

s 
p

e
r 

se
co

n
d

Data size (Bytes)

SGX
Vanilla

Figure 2: Sustained throughput achieved for the vanilla and the SGX-enabled implementation of the
RSA-1024 cryptographic operations in respect to the input data size. The SGX-enabled implemen-
tation introduces 0.9%-25% overhead in both encryption and decryption operations.

5. Conclusions
• First SGX interface for Android OS

• An SGX API available in native C/C++
and Java JNI bindings allowing developers
to integrate SGX in their applications

• Services that enhance the security of An-
droid

• A fully compliant Android SGX cross-
compiler ready to use

6. References
[1] https://github.com/intel/linux-sgx.

[2] https://www.crystax.net/android/ndk/.

[3] https://github.com/intel/linux-sgx-driver/.

[4] https://developer.arm.com/technologies/
trustzone.

[5] https://software.intel.com/en-us/sgx.

7. Acknowledgements
This work was supported in part by the European commission
through the project CIPSEC under Grant Agreement No. 700378


